This first tutorial explains:

It is best to work through the tutorials sequentially.


  1. To begin a maple session on the PCs in the Mathematics Computer Lab (rooms AB 3-333, 3-335, 3-337), click through the sequence: 

    Start > Programs > Maple 11 > Maple 11 
  2. To end a maple session: click on the X in the upper right corner of the maple window. 
  3. To run a maple tutorial on a PC in the Mathematics Computer Lab, start Maple and click through the sequence: 

    Help > Take a Tour of Maple

or

Help > Quick Reference 

  1. Note: The maple prompt is usually a > symbol. 
  2. For help during a maple session, click the Help button, or enter 

    > ?index 

> ?command 

where command can be, as examples

> ?plot 

> ?factor 

> ?trig 

> ?simplify 

> ?expand 

> ?Digits 

> ?evalf 

> ?combine 

> ?limit 


Expressions 

  1. Basic Arithmetic Operations

+ addition

* multiplication __ 2 times x+1 is 2*(x+1), not 2(x+1)

- subtraction

/ division

^ exponentiation

 

Note: curly braces { } and square brackets [ ] do not represent parentheses in Maple. 

  1. To assign an expression to a variable, use := 

    > x := 9 ;  variable x is 9

> w := x+3 ;  variable w is 12

> y := x/2 ;  variable y is 9/2 (not 4.5)

> z := y^3 ;  variable z is 729/8

> qaz := 5*w ;  variable qaz is 60

> qwe := sqrt(x) ;  variable qwe is 3

> zaq := y + w ;  variable zaq is 33/2 

  1. NOTE: Maple commands terminate with a semicolon, not by hitting enter. Consequently, a single Maple command may span many lines. 
  2. Storage is permanent unless a variable is set to another value or is reset 

    > x := 9 ;  variable x is 9

> x := 4 ; variable x is now 4

> x := 'x' ;  variable x is reset or "unassigned" 

  1. To see what is stored in a quantity, just enter its name 

    > x := 9 ;  variable x is 9

> x;  will show that x is 9 

  1. To reset all quantities (almost like exiting maple and starting over) 

    > restart; 
  2. To plot an expression, say f = x2 + cos x on interval [-2, Pi] 
    > f := x^2 + cos(x) ; 

> plot( f, x = -2..Pi, title = `your title` ) ; 

Notes: The number Pi is represented by Pi (not pi). In Maple, pi represents the Greek letter Pi.
The title is enclosed in left quotes, not right quotes. 

  1. To substitute into an expression, say f = x2 + cos x 

    > f := x^2 + cos(x) ;  defines f as an expression

> r := subs( x = 0, f ) ;  substitutes x=0 into f and stores cos(0) in r

> r;  shows that r is 1

> subs( x = Pi, f ) ; 

> evalf( subs( x = Pi, f ) ) ;  returns: 8.8696044

> R := evalf( subs( x = Pi, f ) ) ;  stores 8.8696044 in R

Note: One does not evaluate expression f at x = 0 by entering f(0);. This is because f is defined as an expression, not as a function. 

  1. To substitute into a multivariate expression, say f = x2 + xy 

    > f := x^2 + x*y;  defines f as an expression

> r := subs( x = 1, y = 3, f ) ;  substitutes x=1 and y=3 into f and stores result in r 


Functions 

  1. To define f as a function rather than as an expression, say 
    f(x) = x3 - 3x2 - 9x + 6 

    > f := x -> x^3-3*x^2-9*x+6 ;  f is defined as a function

> f(z);  returns z3 - 3 z2 - 9 z + 6

> f(x+h);  returns (x+h)3 - 3 (x+h)2 - 9 x - 9 h + 6

> plot( f(x), x = -4..5 ) ;  plots f(x) from x=-4 to 5

> plot( f, -4..5 ) ;  plots f from -4 to 5

> f(1);  evaluates f at x=1

Try these (with f defined as above):

> expand( f(x+h) - f(x) ) ; 

> factor( f(x+h) - f(x) ) ; 

> factor( ( f(x+h) - f(x) ) / h ) ;  called the "difference quotient" of f

> limit( %, h = 0 ) ; 

Note: A percent % references the previous result; two %% references the second previous result; three %%% references the third previous result. 

  1. To turn an expression into a function. 

    Example: Suppose we had defined

y = x3 - 3x2 - 9x + 6

as an expression:

> y := x^3-3*x^2-9*x+6 ;  y is defined as an expression

To turn it into a function, use unapply:

> f := unapply( y, x ) ;  turns expression y into a function f(x)

> f(2);  evaluates f(2) and returns -16. 

  1. To define a multivariate function

    > f := (x,y) -> y * cos(x) ;  f is defined as a function of x and y

> r1 := f(0,2) ;  evaluates f(0,2) and stores result 2 in r1.

> f(Pi,2) ;  evaluates f(Pi,2) and returns -2. 

  1. To turn a multivariate expression into a multivariate function. 

    Example: Suppose we had defined z = y cos x as an expression:

> z := y * cos(x) ;  z is defined as an expression involving x and y

To turn it into a function, use unapply:

> f := unapply( z, (x,y) ) ;  turns expression z into a function f(x,y)

> f(0,2);  evaluates f(0,2) and returns 2.

> f(Pi,2);  evaluates f(Pi,2) and returns -2. 

  1. To convert powers of trig functions to sines and cosines, use combine: 

    > Q1 := cos(x)^3 - 4*sin(x)^5 ; 

> Q2 := combine(Q1) ; 

Note:

cos(x)^3 means cos3 x or (cos x)3. 
cos(x^3) means cos (x3).

  1. To expand trig functions, use expand: 

    > Q1 := sin(x+y) ; 

> Q2 := expand(Q1) ; 

  1. Piecewise Functions. For example, to define the piecewise function

f(x) =

x + 5

if x < -1

x2 + 1

if -1 < x < 2

1

if x = 2

7 - x

if x > 2

> f := x -> piecewise( x <= -1, x+5, x<2, x^2+1, x=2, 1, x>2, 7-x) ; 
Note that the order is: ( range 1, function 1, range 2, function 2, . . . )

> f(-3);  evaluates f(-3)

> f(2);  evaluates f(2)

> plot( f(x), x = -6..8, title = `A Piecewise Function` ) ; 
plots f(x) on interval [-6,8] and gives the plot a title

> limit( f(x), x = -1, left ) ;  evaluates the left-sided limit of f(x) at -1

> limit( f(x), x = -1, right ) ;  evaluates the right-sided limit of f(x) at -1

> limit( f(x), x = -1 ) ;  evaluates the limit of f(x) at -1 (it does not exist)

> limit( f(x), x = 2 ) ;  evaluates the limit of f(x) at 2 

  1. Try these examples: 

    > 8*4; 

> 8/4; 

> 9^4; 

> evalf(9/4); 

> factor( x^5 - 8*x^3 + 16*x ) ; 

> simplify( (x^5 - 8*x^3 + 16*x) / x ) ; 

> factor(%) ; 

> evalf(Pi) ;  the number Pi

> evalf(pi) ;  The Greek letter pi is not a number.

> evalf( cos(3) ) ; 

> evalf( log(exp(-4)) ) ; 

Note: The quantity e-4 is entered as exp(-4), not as e^(-4). Likewise, for example, ex2 is entered as exp(x^2), not as e^(x^2).

> f := exp(x); 

> plot( f, x = -2..2 ) ; 

> subs( x = 2, f ) ; 

> exp(2); 

> evalf( exp(2) ) ; 

> g := sqrt(x) ; 

> plot( g, x = 0..2 ) ; 

> combine( sin(2*x)*cos(4*x) + cos(2*x)*sin(4*x) ) ; 

> expand( sin(6*x) ) ; 

> combine(%); 

> expand( cos(x-y) ) ; 

> combine( sin(3*x)^4 ) ; 

> plot( {f,g}, x = 0..2 ) ;  to plot two expressions on a common graph.

Note: Curly braces { } denote a set (list).

> plot( f-g , x = 0..2 ) ;  plots the difference f(x) - g(x)

> h := x^3 ; 

> plot( {f, g, h}, x = 0..2 ) ;  to plot three expressions on a common graph

> plot( 1/(x-3) , x = -2..8, -10..10 ) ; 
plots 1/(x-3) on interval [-2,8] with the range restricted to [-10,10]

> limit( 1/(x-3), x = 3, left ) ;  evaluates the left-sided limit of 1/(x-3) at 3

> limit( 1/(x-3), x = 3, right ) ;  evaluates the right-sided limit of 1/(x-3) at 3

> limit( 1/(x-3), x = -infinity ) ;  evaluates the limit of 1/(x-3) as x approaches -infinity

> limit( 1/(x-3), x = infinity ) ;  evaluates the limit of 1/(x-3) as x approaches infinity 

  1. Digits: By default Maple performs 10 digit arithmetic. We can change the precision easily by settings Digits to another value. For example, to perform 16 digit arithmic in a Maple session, set Digits to 16 at the beginning of your Maple session:

    > Digits := 16 ;  sets the precision to 16 in all subsequent calculations

> evalf( Pi ) ;  gives the value of Pi to 16 digits 

3.141592653589793 

> evalf( exp(1) ) ;  gives the value of the number e to 16 digits 

2.718281828459045

> evalf( 1/3 ) ;  gives the value of 1/3 to 16 digits 

0.3333333333333333 


  1. Some of the Many Functions Known To Maple Include:

Function

Command

 

Function

Command

cos x

cos(x)

 

arccot x

arccot(x)

sin x

sin(x)

 

ex

exp(x)

tan x

tan(x)

 

ln x

log(x)

cot x

cot(x)

 

cosh x

cosh(x)

arccos x

arccos(x)

 

sinh x

sinh(x)

arcsin x

arcsin(x)

 

tanh x

tanh(x)

arctan x

arctan(x)

 

arcsinh x

arcsinh(x)

Note: The quantity e-4 is entered as exp(-4), not as e^(-4). Likewise, for example, e-x2 is entered as exp(-x^2), not as e^(-x^2), and not as exp((-x)^2).

Maple knows many other functions.